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Abstract: Cryptographic schemes have an algebraic structure and can be described as multivariate polynomial 

equations. Even though algebra is the default tool in the cryptanalysis of asymmetric cryptosystems, there has been 

recently an increase in interest in the use of algebraic cryptanalysis techniques in the analysis of symmetric 

cryptosystems. The basic idea behind the algebraic attack is to express the whole cryptosystem as a large system of 

multivariate polynomial equations, then considers methods for solving the system to recover the key. Solving 

multivariate polynomial systems is a typical problem studied in Algebraic Geometry and Computational Algebra. 
Computing Grobner basis is the best well known method to solve this problem. Finding grobner bases is a difficult task 

which requires lots of computational resources. This paper discusses and explains in depth different algorithms to 

compute grobner bases using examples. This paper also, compares these algorithms from the point of views of accuracy 

and efficiency (the required resources: time and effort) to get the accurate results. Finally, the worthiness of these 

algorithms to be applied to cryptanalysis has been discussed. 
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I. INTRODUCTION 

 

In his seminal paper, Claude Shannon asked the question 
how we can ever be sure that a cryptosystem, which is not 

ideal, will require a large amount of work to break with 

every method of analysis. [1]," Shannon suggested two 

approaches to that problem:  

1) We can study the possible methods of solution available 

to the cryptanalyst and attempt to describe them in 

sufficiently general terms to cover any of the methods he 

might use. We then construct our system to resist this 

general method of solution. 2) We may construct our 

cipher in such a way that breaking it is equivalent to (or 

requires at some point in the process) the solution of some 
problem known to be laborious. Thus, if we could show 

that solving a certain system requires at least as much 

work as solving a system of simultaneous equations in a 

large number of unknowns, of a complex type, then we 

would have a lower bound of sorts for the work 

characteristic, the structure of this paper as follows: firstly; 

cryptanalysis types is explained in section (2), then 

detailed explanation of Algebraic attacks in section (3), 

Grobner bases will be discussed in section (4) while 

sections (5,6) presents and analysis F4 and F5 , finally 

conclusion and future work is presented in section (7).  

 

II. CRYPTANALYSIS TYPES 

 

Cryptology [2, 3] is an art and science of hidden or secret 

writing. It has two main areas: cryptography and 

cryptanalysis [4, 5]. Cryptography is basically related with 

converting data to make them secure and immune to 

attacks where cryptanalysis is related with breaking of 

codes [2]. There are two categories of cryptography.  
 

A. Symmetric key cryptography  

B. Asymmetric key cryptography 

 

 

In symmetric key, there is only single key which is used 
by sender for encryption and receiver for decryption. In 

this type the key is shared between both the parties [4]. In 

asymmetric key, there are two keys: a private key and a 

public key. Private Key is kept by receiver for decryption 

and public key is announced to public and is used for 

encryption of the data [3]. The main goal of a cryptanalyst 

is to attack the cryptosystem to obtain maximum 

information about the plaintext (original data). 

Classification of attacks can be done on following basis 

[4]: 
 

A. Amount of Information Available to Attacker 

The main objective of attacking is to access the encryption 

key in place of simply decrypt the data. Attacks can be 
classified on the basis of information available to attacker. 

(a) Cipher text only. (b) Known Plain text. (c) Chosen 

Cipher text. (d)  Chosen Plain text. (e)  Adaptive Chosen 

Plain text. (f)  Adaptive Chosen Cipher text. (g)  Related 

Key Attack. 
 

B. Computational Resources Required 

Attacks can also be classified on the basis of resources 

they require. Those resources are 
 

Time: the number of computation steps (like encryption) 

that must be performed.  

Memory: the amount of memory required to perform the 

task.  

Data: the amount of required plain text or cipher text.  

Actually it is very difficult to find out all these resources 

very precisely, especially when the attack isn’t practical to 

actually implement for testing.  But academic cryptanalyst 

tend to provide at least estimated order of magnitude of 

their attacks difficulty. 
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1- Cryptanalysis of Asymmetric Cipher 

Asymmetric cryptography is a type which relies on two 
keys, one private key for decryption and one public key 

for encryption. Such kind of cipher relies on the hard 

mathematical problem for their security. So the main point 

of attack is to develop methods to solve such problems. 

The security of Asymmetric cryptography depends on 

mathematical questions in a way that symmetric 

cryptography doesn’t, conversely links to wider area of 

mathematical research in a new way. Asymmetric 

techniques are designed based on the difficulty of solving 

of various hard mathematical problems. In case any 

improved algorithm is found to solve the problem then 

system is weakened. For example the security of Diffie-
Hellman key exchange depends on calculating the discrete 

logarithm [2]. While the security of RSA protocol depends 

on the difficulty of integer factorization of a large 

composite number. A breakthrough in factoring would 

impact security of RSA. Another main feature of 

asymmetric over symmetric cipher is that cryptanalyst has 

an opportunity to make use of knowledge obtained from 

public key [3]. 

 

2- Cryptanalysis of Symmetric Cipher [4] 

There are various types of well-known attacks on 
symmetric cipher; as given below:  

Boomerang Attack: This is a method of cryptanalysis of 

block cipher based on differential cryptanalysis .This 

attack provides various avenues of attack on various 

cipher which are deemed safe from differential 

cryptanalysis, Brute Force Attack or exhaustive key 

search is a type of strategy which can be applied on any 

type of encrypted data. In this type of attack all possible 

keys are tried systematically until correct key is found. 

This method is used when any other weakness is not 

useful; Davies’ Attack This attack is dedicated statistical 

cryptanalysis method for attacking Data Encryption 
Standard (DES). This attack was originally created by 

Donald Davies in 1987[?], Differential Cryptanalysis 

This attack is a chosen plaintext attack where some 

relationship is found out between the cipher texts 

produced by two related plaintext. It focuses on the 

statistical analysis of two inputs and two outputs of 

cryptographic algorithm, Integral cryptanalysis; this 

attack is applicable on block cipher based on Substitution-

Permutation Networks (SPN). Unlike differential 

cryptanalysis, it uses sets or even multiset’s of chosen 

plaintext of which part is held constant and other part 
varies with all possibilities It is commonly known as 

Square attack, Linear Cryptanalysis: this is a known 

plaintext attack that requires access to large amount of 

plaintext and cipher text pairs which are encrypted with 

unknown keys. It focuses on statistical analysis against 

one round of decryption on large number of cipher text. 

The attacker decrypts each cipher text using all possible 

sub keys for one round of encryption and studies the 

resulting intermediate cipher text to seek the least random 

result.  

All the previous mentioned attacks are statistical in nature.   
On the other hand, algebraic attacks depend on the 

structural nature of the cryptosystems. Notably, during the 

last two decades algebraic cryptanalysis grabbed a lot of 

Attention. This interest shows up because Rijndael (the 
AES candidate) has a rich algebraic structure. The 

following section mentioned cryptanalysis from point of 

view Algebraic attacks. 

 

III. ALGEBRAIC ATTACKS 

 

Algebraic cryptanalysis is a general tool which permits 

one to breach the security of a wide range of cryptographic 

schemes. Algebraic techniques have been successfully 

applied against a number of multivariate schemes and 

stream ciphers. Yet, their feasibility against block ciphers 

remains the source of much speculation. The goal of 
algebraic cryptanalysis is to break cryptosystems by using 

mathematical tools coming from symbolic computation 

and modern algebra. More precisely, an algebraic attack 

can be decomposed in two steps: first the cryptosystem 

and its specifics have to be converted into a set of 

multivariate polynomial equations, then the solutions of 

the obtained                      polynomial system have to be 

computed. The security of a cryptographic primitive thus 

strongly relies on the difficulty of solving the associated 

polynomial system. These attacks have been proven to be 

very efficient for both public key or symmetric 
cryptosystems and stream ciphers. In this paper, we focus 

on the polynomial system solving part. It is well known 

that this problem is very difficult (NP-hard in general). 

However, for many instances coming from algebraic 

attacks, the resolution is easier than in the worst-case 

scenario. Grobner bases, first introduced in [6], are a 

fundamental tool for tackling this problem the basic idea 

behind the algebraic attack is to set up a system of 

equations including key bits and output bits and then to 

solve this system to recover key or key stream information 

[7]. A system of linear equations may be solved by 

Gaussian elimination method or any other known method. 
However, a cipher may contain a non-linear part. In this 

case the equations will be non-linear. If the system of 

equations is clearly defined then the equation set can be 

solved using techniques such as linearization, or other 

methods such as Gröbner bases. However, since the 

complexity of solving such equations grows exponentially 

with the degree of the equations, the cryptanalysis may try 

to identity low degree equations we do some preliminaries 

then grobner base algorithm is presented which provides 

us a platform to analyze and solve common problems. 

 

IV. GROBNER BASES 

 

One way to solve a system of polynomial equations is to 

construct a new system of polynomial equations with the 

same solutions as the initial one, but with a simpler 

structure and then solve this “simpler” system .This 

method is based on polynomial ideal theory and 

multivariate polynomial division and generates special 

bases of these ideals, called Grobner bases. The algorithm 

is based on the construction of S-polynomials and on 

polynomial division of these S-polynomials [8, 9]. 
Multivariate polynomial division requires a monomial 

ordering and different orderings can give rise to radically 
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different Grobner bases .For some problems and some 

orderings, especially lexicographic ordering, the 
construction of Grobner bases using this standard 

Buchberger’s algorithm or its variations [10, 11, 12] is 

very time-consuming and sometimes even does not finish 

in reasonable time. 

Definition (1). (Ideal)[10] The ideal defined by a set of 

polynomials F = {f1 ,… , fm /fi ∈ 𝔽[x1 … , xn]} is the set of 

all polynomials that can be generated as polynomial 

combinations of the initial polynomials f1 ,… , fm  

I = { fihi:

m

i=1

hi ∈ ℂ x1 … , xn }  

 

Where hi are arbitrary polynomials from 𝔽 x1 … , xn . 
Definition (2). [10] (Lexicographic ordering) let xα  and 

xβ be some monomials. we say xα >lex xβ if, in the 

difference α − β ∈ ℤn , the left most nonzero entry is 

positive. 

Definition (3). [12] (Graded Reverse lexicographic 

ordering) ) let xα  and xβ be some monomials. we say 

xα >grevlex xβ if  αi
n
i=1 >  β

i
n
i=1 or if  αi

n
i=1 =  β

i
n
i=1  

and   the difference α − β ∈ ℤn , the right most nonzero 

entry is negative. 

Definition (4). [12](S-Polynomial) let f, g ∈ 𝔽[x1 … , xn] 
be non zero polynomials and >  

Some fixed monomial ordering on 𝔽[x1 … , xn]. 
The S-Polynomial of f and g, denoted S (gp , gq ), is the 

polynomial 

S (gp , gq ) =
LCM(LM gp , LM gq )

LT(gp)
gp

−
LCM(LM gp , LM gq )

LT(gq )
gq  

 

Where LCM(LM gp , LM gq ) is the least common 

multiple of the monomial LM(gp) and LM(gq). The 

above mentioned definition indicates that S-polynomials 

are cross product of leading terms and are constructed to 

cancel leading terms. The leading terms of the two 

components of  𝑆(𝑔𝑝 ,𝑔𝑞) are equal and therefore, cancel 

each other. 

Example. Let G= 𝑔1,𝑔2  where 𝑔1 = 𝑥𝑦2𝑧 − 𝑥𝑦𝑧 and 

𝑔2 = 𝑥2𝑦𝑧 − 𝑧2.These polynomial are ordered with 

respect to Lex order .LM(𝑔1) = 𝑥𝑦2𝑧, LM(𝑔2) = 𝑥2𝑦𝑧  

so 𝐿𝐶𝑀 𝐿𝑀 𝑔1 ,𝐿𝑀 𝑔2  = 𝑥2𝑦2𝑧 . 𝑡𝑒𝑛 𝑆  𝑔1 ,𝑔2 =  
𝑥2𝑦2𝑧   

𝑥𝑦2𝑧
𝑔1 −

𝑥2𝑦2𝑧  

𝑥2𝑦𝑧
𝑔2 

=−𝑥2𝑦𝑧 + 𝑦𝑧2. 
 

Theorem 1. (Buchberger's criterion)  

A finite set of polynomials 𝐺 = {𝑔1,… ,𝑔𝑙},𝐺 ⊂ 𝐼 is a 

Grobner basis of I if and only if 𝑆(𝑔𝑝 ,𝑔𝑞)𝐺 = 0 

for all pairs 𝑖, 𝑗 ∈ 1,… , 𝑡, 𝑖 ≠ 𝑗. 
Proof. The proof of this theorem can be found in [8] 

The simplest version of the Buchberger’s algorithm for 

computing a Grobner basis of a given ideal is based on this 

criterion. 
 

Algorithm 1. Buchburger's[8] 

Input:𝐹 = {𝑓1 ,… ,𝑓𝑚 }  

Output: A Grobner basis 𝐺 =  𝑔1,… ,𝑔𝑙  𝑓𝑜𝑟 𝐼 =
                𝑓1 ,… ,  𝑓𝑚   ,𝑤𝑖𝑡 𝐹 ⊂ 𝐺. 

1:G:=F 

2:repeat 

3:    𝐺 ′ ≔ 𝐺 

4:    for each pair (p, q) such that 

𝑔𝑝 , 𝑔𝑞 ∈           𝐺 ′ 𝑎𝑛𝑑 𝑝 ≠ 𝑞 𝑑𝑜  

5:         S:= 𝑆(𝑔𝑝 ,𝑔𝑞)𝐺 

6:          𝑖𝑓 𝑆 ≠ 𝑂  𝑡𝑒𝑛 

7:         𝐺 = 𝐺 ∪ {𝑆} 

8:          end if 

9:         end for 

10:  until 𝐺 ≔ 𝐺 ′ 
This algorithm can be analyzed in simple form within the 

following example  

𝐹 ={2xyz+3,3xz+y, 𝑧3 + 1}this is the original system the 
following steps shows how to calculate grobner basas. 
 

I 𝑔1 ,𝑔2 𝑆 𝑆𝐺  Added critical 

 pairs 

0    {2xyz+3,3xz+y}, 

{2xyz+3,𝑧3 + 1}, 
{3xz+y, 𝑧3 + 1} 

1 2xyz+3,3

xz+y 
3𝑦2

+ 4 

3𝑦2  +
4 

{2xyz+3, 3𝑦2  +4}, 

{3xz+y, 3𝑦2  +4}, 

{𝑧3 + 1, 3𝑦2  +4} 

2 2xyz+3,

𝑧3+1 

3xy+

3𝑧2 

3xy+

3𝑧2 

{2xyz+3, 3xy+3𝑧2} 

,{3xz+y, 3xy+3𝑧2}, 

{𝑧3 + 1, 3xy+3𝑧2}, 

{ 3𝑦2  +4, 3xy+3𝑧2} 

3 3xz+y,

 𝑧3+1 

y𝑧2+

2x 

y𝑧2+

2x 

{2xyz+3, y𝑧2+2x}, 

{3xy+3𝑧2, y𝑧2+2x}, 

{𝑧3+1, y𝑧2+2x}, 

{ 3𝑦2  +4, y𝑧2+2x}, 

{3xy+3𝑧2, y𝑧2+2x} 

4 2xyz+3,  
3𝑦2  +4 

2xz-y 0  

. 

. 

. 

    

1
0 

3𝑦2  +4, 

3xy+3𝑧2 

y𝑧2+
2x 

o  

1

1 

2xyz+3, 

y𝑧2+2x 

𝑥2+3
z 

𝑥2+3
z 

{2xyz+3, 𝑥2+3z}, 

{ 3xz+y, 𝑥2+3z}, 

{𝑧3 + 1, 𝑥2+3z}, 

{ 3𝑦2  +4,𝑥2+3z}, 

{3xy+3𝑧2, 𝑥2+3z},    

{{𝑦 𝑧2+2x,   𝑥2+3z} 

1

2 
3xy+3𝑧2

, y𝑧2+2x 

y𝑧2-

𝑥2 

0  

. 

. 

. . . . . .  0  

2

1 
𝑦 𝑧2+2x,

   𝑥2+3z 

2 

y𝑧3+

2𝑥3 

0  

 

Now the ideal become {3y2  +4, 

3xy+3𝑧2 ,𝑦 𝑧2+2x,   𝑥2+3z, 2xyz+3,𝑧3+1, 3xz+y } 
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This example shows how many steps required to find ideal 

,critical pairs is considered as waiting list to evaluate its S 
polynomial  then apply polynomial division; As soon as 

𝑆𝐺 = 0 for all polynomials then ideal is obtained  . For 
demonstration only a system of three equations have been 

used to show how the grobner base work in Fig (1) shows 

the original system while Fig(2) shows  3 polynomial of 

the  ideal  only   

 

 
Fig(1) The original system 

{2xyz+3,3xz+y ,𝑧3 + 1}, 
 

 
Figure (2) Three Polynomial of The Ideal 

 

Analysis of Buchberger's Algorithm [8,9,10] 

From this example the algorithm become clear enough to 
understand, although algorithm is very simple to describe 

and implement but computing of S every time is very 

waste of time and difficult to obtain for big  system. or 

some problems and some orderings, especially 

lexicographic ordering, the construction of Grobner bases 

using this standard Buchberger’s algorithm or its 

variations  is very time-consuming and sometimes even 

does not finish in reasonable time. Therefore, many 

improvements of Buchberger’s algorithm have been 
proposed in recent years. They are mostly divided into two 

groups. 

 

V. F4 ALGORITHM  

 

The first group of improvements is dealing with so-called 

strategies of selection. During the Grobner basis 

computations, several choices can be made. We can select 

an S-pair and also polynomials for reduction. The well-

known algorithm, with an improved selection strategy, is 

the F4 algorithm developed by Faug`ere [13], though this 

algorithm is slightly different from standard Buchberger’s 
algorithm. The F4 algorithm not only improves the 

selection strategy but it also replaces multiple polynomial 

divisions by row reduction (Gauss-Jordan elimination) of a 

single sparse matrix. In this way the F4 algorithm 

transforms computations with polynomials to linear 

algebra computations. The main idea of Faugère’s F4 

algorithm is to use linear algebra to simultaneously reduce 

a large number of pairs. F4 works with critical pairs 

instead of S-polynomials: the critical pair  𝑐(𝑓1 ,𝑓2) of two 

polynomials and is defined as the 

tuple ( 𝑙𝑐𝑚,𝑢1 ,𝑓1 ,𝑢2 ,𝑓2 ) where lcm=LCM(LM(𝑓1), 

LM(𝑓2)), , the least common multiple of LM(𝑓1) and 

LM(𝑓2), and𝑢𝑖 =
𝑙𝑐𝑚

𝐿𝑇(𝑓𝑖)
 .  

 

At each iteration step, a Macaulay-style matrix is 

constructed, whose columns correspond to monomials and 

rows to polynomials. This matrix contains the products 

(𝑢𝑖𝑓𝑖 ) coming from the selected critical pairs (classically, 
all pairs with the lowest total degree lcm, but other 

selection strategies are possible) and also all polynomials 

involved in their reductions, which are determined during 

the Symbolic preprocessing phase. By computing the 

reduced row echelon form of this matrix, we obtain the 

reduced S-polynomials of all pairs considered. This 

algorithm, combined with an efficient implementation of 

linear algebra, yields very good results. A complete 

description of this F4 is presented below (algorithm2, 3, 4 

,5). For a more detailed discussion we refer the reader to 

[14].  
 

Algorithm 2  F4[14] 

Input :𝐹 = (𝑓1 ,𝑓2 ,… ,𝑓𝑚 ) ∈ ℛ𝑚  

Output : The Grobner bases of F . 

Initialization : 𝐺: = ∅  𝑎𝑛𝑑 𝑃 ≔ ∅   𝑎𝑛𝑑 𝑑 ≔ 0 

1. While 𝐹 ≠ ∅    𝑑𝑜 

2. 𝑓 ≔ 𝑓𝑖𝑟𝑠𝑡(𝐹) 

3. 𝐹 ≔ 𝐹 ∖ {𝑓} 

4.  𝐺,𝑃 ≔ 𝑈𝑝𝑑𝑎𝑡𝑒(𝐺,𝑃, 𝑓) 

5. 𝑊𝑖𝑙𝑒  𝑃 ≠ ∅     𝑑𝑜 

6. 𝑑 ≔ 𝑑 + 1 

7. 𝑃𝑑 ≔ 𝑆𝑒𝑙𝑒𝑐𝑡 𝑃  
8. 𝑃 ≔ 𝑃 ∖ 𝑃𝑑  

9.  𝐹 𝑑
+,𝐹𝑑 ≔ 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑃𝑑 ,𝐺, (𝐹𝑖 .

)𝑑=1,…, 𝑑−1 ) 

10. 𝑓𝑜𝑟  ∈ 𝐹 𝑑
+   𝑑𝑜 

11.  𝐺,𝑃 ≔ 𝑈𝑝𝑑𝑎𝑡𝑒 𝐺,𝑃,   
12. Return G 
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Algorithm 3: Reduction[14] 

Input: 𝑃𝑑  a finite subset of selected pairs, G a finite subset 

of ℛ[𝑥] ,𝔽 = (𝐹𝑘)𝑘=1,…,𝑑  , where 𝐹𝑘  is a finite subset of 

ℛ[𝑥]. 
 

Output : two finite subsets of ℛ[𝑥]. 
1. F:= Symbolic Preprocessing(𝑃𝑑𝐺,𝔽) 

2. 𝐹: =
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑅𝑜𝑤 𝐸𝑐𝑒𝑙𝑜𝑛 𝐹𝑜𝑟𝑚 𝑜𝑓 𝐹 𝑤. 𝑟. 𝑡. < 

3. 𝐹 + ≔ {𝑓 ∈ 𝐹 ∖ 𝐻𝑇 𝑓 ∉ 𝐻𝑇 𝐹 } 

4. Return(𝐹 +, F) 

 

Algorithm 4: Symbolic Preprocessing[14] 

Input: 𝑃𝑑  a finite subset of selected pairs, G a finite subset 

of ℛ[𝑥] ,𝔽 = (𝐹𝑘)𝑘=1,…,𝑑  , where 𝐹𝑘  is a finite subset of 

ℛ[𝑥]. 
 

Output : two finite subsets of ℛ[𝑥]. 

1. F=∪𝑐(𝑓1 ,𝑓2)∈𝑃𝑑
 
𝑚𝑢𝑙𝑡 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑢1 ,𝑓1 ,𝔽  ,

𝑚𝑢𝑙𝑡 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑢2 ,𝑓2 ,𝔽  
  

2. Done :=HT(F) 

3. While T(F)≠ 𝐷𝑜𝑛𝑒 𝑑𝑜 
4. m an element of T(F) \ Done  

5. Done := Done ∪  {m}  

6. if m top reducible module G then  

7. m =𝑚′ ∗ 𝐻𝑇(𝑓) for some𝑓 ∈ 𝐺 and some 𝑚′ ∈ 𝑇 

8. F:=F∪ {𝑚𝑢𝑙𝑡 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑚′,𝑓,𝔽  } 

9. Return F 

 

Algorithm 5 simplify[14] 

Input:  𝑡 ∈ 𝑇 𝑎 𝑡𝑒𝑟𝑚 

         𝑓 ∈ 𝑅 𝑋  𝑎𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 
       𝔽 = (𝐹𝑘)𝑘=1,…,𝑑  , where 𝐹𝑘  is a finite subset                     

ℛ[𝑥]. 
 

Output: a non evaluated product, i.e. an element of T×R[x] 

1. for 𝑢 ∈ list of divisors of t do  

2. if ∃𝑗 1 ≤ 𝑗 < 𝑑 𝑠𝑢𝑐 𝑡𝑎𝑡  𝑢 ∗ 𝑓 ∈ 𝐹𝑗 𝑡𝑒𝑛 

 

3. 𝐹𝑗   is the row echelon form of 𝐹𝑗  w.r.t. <  

4. There exists a (unique) 𝑝 ∈ 𝐹 𝑗
+ such that 

HT(p)=HT(u*p) 

5. If 𝑢 ≠ 𝑡 𝑡𝑒𝑛 

6. Return Simplify 
𝑡

𝑢
, 𝑝,𝔽  

7. Else 

8.         Return(1,p) 

9. Return (t, f) 

 

Example  

If 𝐺 =   107𝑥𝑦 + 𝑦2 + 29, 𝑥2 + 80𝑥𝑦 + 114   
With respect to Lex order under 𝔽127  critical pairs in the 

main loap are : 

𝑃1 = [  𝑥, 107𝑥𝑦 + 𝑦2 + 29 ,  𝑦,𝑥2 + 80𝑥𝑦 + 114  ] as 

the intermediate basis . 

𝐿1 = [ 𝑦, 𝑥2 + 80𝑥𝑦 + 114 ,  𝑥, 107𝑥𝑦 + 𝑦2 + 29 ] 
Sympolic processing returns  

[107𝑥𝑦2 + 𝑦3 + 29𝑦,𝑥2𝑦 + 80𝑥𝑦2 + 114𝑦, 107𝑥2𝑦
+ 𝑥𝑦2 + 29𝑥] 

Or in matrix form  

𝐹 = 𝐴𝐹 .𝑣𝐹 =  
0  107  0  1  29

1  80     0  0  114
107  1  29  0   0

 

 

 
 

𝑥2𝑦

𝑥𝑦2

𝑥
𝑦3

𝑦  

 
 

, 

 

The row echelon form  of F is  

𝐹 = 𝐴𝐹
 .𝑣𝐹 =   

1      0        0     4    103
0   1     0         19        43

0       0  1         24             17
 

 

 
 

𝑥2𝑦

𝑥𝑦2

𝑥
𝑦3

𝑦  

 
 

 

 
Those polynomial whose leading monomial are not in F 

are 𝐹 =[𝑥 + 24𝑦3 + 17𝑦  

P=𝑃2 =       [((𝑦, 𝑥 + 24𝑦3 + 17𝑦),(1, 107𝑥𝑦 +
                     𝑦2 +  29)),((x, 𝑥 + 24𝑦3 +
                    17𝑦), (1,𝑥2 + 80𝑥𝑦 + 114))] 
G      =       [𝑥 + 24𝑦3 + 17𝑦] 
𝐿2  =       [(1, , 107𝑥𝑦 + 𝑦2 +  29),(1, 𝑥2 + 80𝑥𝑦 +
                   114),(𝑦, 𝑥 + 24𝑦3 + 17𝑦),(x, 𝑥 +
                    24𝑦3 + 17𝑦)] 
 

F = 17𝑦2 + 24𝑦4 + 𝑥𝑦, 107𝑥𝑦𝑦229,17𝑦4 + 24𝑦6 +
𝑥𝑦3 , 114 +   80𝑥𝑦+𝑥2,17xy+24x𝑦3+𝑥2] 

𝐹 =           [67 + 74𝑦2 + 𝑦4 , 122 + 52𝑦2 + 𝑦6 , 43
+ 19𝑦2 + 𝑥𝑦, 124 + 34𝑦2 + 𝑥𝑦3 , 103
+ 4𝑦2 + 𝑥2] 

𝐹 + =          [67 + 74y2 + 𝑦4 , 122 + 52𝑦2 + 𝑦6] 
The third iteration  

 P=𝑃3 =   [  𝑦2 , 67 + 74𝑦2 + 𝑦4 ,  1,122 +

                   52𝑦2+𝑦6 ]       

 

G=       [67 + 74𝑦2 + 𝑦4 ,𝑥 + 24𝑦3 + 17𝑦] 
𝐿3 =    [ 1,122 + 52𝑦2 + 𝑦6   ,  𝑦2 , 67 + 74𝑦2 + 𝑦4 , 
F=[67 + 74𝑦2 + 𝑦4 , 122 + 52𝑦2 + 𝑦6 , 67𝑦2 +  74𝑦4 +
𝑦6] 
𝐹 =       67 + 74𝑦2 + 𝑦4 , 122 + 52𝑦2 + 𝑦6  
𝐹 + =     ∅ 
 

After finishing 3 iterations this work can be summarize in 

two shown figures 

 

 
Fig (3) The original system 𝟏𝟎𝟕𝒙𝒚 + 𝒚𝟐 + 𝟐𝟗, 𝒙𝟐 +

𝟖𝟎𝒙𝒚 + 𝟏𝟏𝟒 



IARJSET      ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 3, Issue 5, May 2016 
 

Copyright to IARJSET                                              DOI 10.17148/IARJSET.2016.3519                                        90 

 
Fig(4) The ideal obtained by F4 

𝟔𝟕 + 𝟕𝟒𝒚𝟐 + 𝒚𝟒,𝟏𝟐𝟐 + 𝟓𝟐𝒚𝟐 + 𝒚𝟔 
 

The two figure shown have the same solution .Although 
there were two variable but there's solution can't be appear 

because solution were complex values. 

   

Analysis of F4 Algorithm [10,14] 

F4 algorithm uses Gaussian elimination to speed up the 

time-consuming step of “critical pair” reductions, also the 

reduction is not a singles S-Polynomial at a time; but 

There are no criteria to detect useless critical pairs. 

 

VI. F5 ALGORITHM 

 

The second group of improvements is trying to remove 
such useless computations by removing unnecessary S-

polynomials. One way how this can be done is to apply a 

selection strategy [15] which will eliminate S-polynomials 

that would reduce to zero. The best known algorithm 

which solves this problem is another algorithm from 

Faug´ere called F5 [16]. This algorithm is based on ideas 

from the paper [17], and in many cases, results in 

computations without reductions to zero. The idea of  F5 

algorithm is to compute simultaneously a Grobner basis 

and a basis of the module of syzygies: a critical pair is not 

considered if the corresponding syzygy is a linear 
combination of some elements of the current basis of the 

module of syzygies. They have in all in common to use 

implicitly or explicitly the trivial sysygies 𝑓𝑖𝑓𝑗 =  𝑓𝑗𝑓𝑖. 
Another common point is that all the algorithms are nearly 

Buchberger’s algorithm except that some reductions are 

avoided. The efficiency of those algorithms is not yet 

satisfactory in theory and practice because a lot of useless 

critical pairs are not removed. For instance we quote from 

[15] that “many useless pairs are discovered, but it 

involves a lot of extra computation, so the execution time 

is increased The strategy in this section is to take into 

account only the trivial syzygies 𝑓𝑖𝑓𝑗  −  𝑓𝑗𝑓𝑖  =  0 but not 

to compute the module of syzygies. This imply two major 

differences with the standard Buchberger's algorithm or 

the F4 algorithm: first we need to compute all the Grobner 

basis of the following ideals (𝑓𝑚 ), (𝑓𝑚−1 ,𝑓𝑚 ), . . . , 

(𝑓1 , . . . , 𝑓𝑚 ). The second difference is that some reductions 

are not allowed; as a result the reduction of one 

polynomial by a list of polynomials may be several 
polynomials. A consequence of the restriction to trivial 

syzygies is that, in worst cases, the algorithm does not 

avoid all the useless pairs: for instance if we have two 

times the same polynomial in the original equations there 

is a reduction to zero.  

That if the input system is a regular sequence, then there is 

no reduction to zero. Moreover, in practice, for most 
systems there is no reduction to zero.  
 

Analysis of F5 [16, 17] 

This algorithm 𝑖𝑠 limited to solve a system of homogenous 

polynomials under finite field, if system is regular; there 

will be no reduction pairs. So this algorithm is not suitable 

for cryptanalysis of symmetric cryptosystems. The only 

application was HFE.  

 

VII. CONCLUSION AND FUTURE WORK 

 

In this paper we discussed various types of cryptanalysis 

techniques. If we know about various types of attacks then 
it is very useful to improve the cryptographic algorithm or 

encryption techniques. From the previous discussion; the 

overall conclusion F4 is more efficient than grobner bases 

(reaches to the same result in faster processes). The result 

of anatomy of grobner bases   F5 is always efficient than 

F4. But F4 is more suitable than F5 for cryptanalysis. 

Future work will try to mention all variants of F4 To 

deduce which of them is the best for cryptanalysis. 
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